Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We report the discovery of 15 exceptionally luminous 10 ≲z≲ 14 candidate galaxies discovered in the first 0.28 deg2of JWST/NIRCam imaging from the COSMOS-Web survey. These sources span rest-frame UV magnitudes of −20.5 >MUV> −22, and thus constitute the most intrinsically luminousz≳ 10 candidates identified by JWST to date. Selected via NIRCam imaging, deep ground-based observations corroborate their detection and help significantly constrain their photometric redshifts. We analyze their spectral energy distributions using multiple open-source codes and evaluate the probability of low-redshift solutions; we conclude that 12/15 (80%) are likely genuinez≳ 10 sources and 3/15 (20%) likely low-redshift contaminants. Three of ourz∼ 12 candidates push the limits of early stellar mass assembly: they have estimated stellar masses ∼ 5 × 109M⊙, implying an effective stellar baryon fraction ofϵ⋆∼ 0.2−0.5, whereϵ⋆≡M⋆/(fbMhalo). The assembly of such stellar reservoirs is made possible due to rapid, burst-driven star formation on timescales < 100 Myr where the star formation rate may far outpace the growth of the underlying dark matter halos. This is supported by the similar volume densities inferred forM⋆∼ 1010M⊙galaxies relative toM⋆∼ 109M⊙—both about 10−6Mpc−3—implying they live in halos of comparable mass. At such high redshifts, the duty cycle for starbursts would be of order unity, which could cause the observed change in the shape of the UV luminosity function from a double power law to a Schechter function atz≈ 8. Spectroscopic redshift confirmation and ensuing constraints of their masses will be critical to understand how, and if, such early massive galaxies push the limits of galaxy formation in the Lambda cold dark matter paradigm.more » « less
- 
            Abstract We present a new method based on information theory to find the optimal number of bands required to measure the physical properties of galaxies with desired accuracy. As a proof of concept, using the recently updated COSMOS catalog (COSMOS2020), we identify the most relevant wave bands for measuring the physical properties of galaxies in a Hawaii Two-0- (H20) and UVISTA-like survey for a sample ofi< 25 AB mag galaxies. We find that with the availablei-band fluxes,r,u, IRAC/ch2, andzbands provide most of the information regarding the redshift with importance decreasing fromrband tozband. We also find that for the same sample, IRAC/ch2,Y,r, andubands are the most relevant bands in stellar-mass measurements with decreasing order of importance. Investigating the intercorrelation between the bands, we train a model to predict UVISTA observations in near-IR from H20-like observations. We find that magnitudes in theYJHbands can be simulated/predicted with an accuracy of 1σmag scatter ≲0.2 for galaxies brighter than 24 AB mag in near-IR bands. One should note that these conclusions depend on the selection criteria of the sample. For any new sample of galaxies with a different selection, these results should be remeasured. Our results suggest that in the presence of a limited number of bands, a machine-learning model trained over the population of observed galaxies with extensive spectral coverage outperforms template fitting. Such a machine-learning model maximally comprises the information acquired over available extensive surveys and breaks degeneracies in the parameter space of template fitting inevitable in the presence of a few bands.more » « less
- 
            Abstract Observations of cold molecular gas reservoirs are critical for understanding the shutdown of star formation in massive galaxies. While dust continuum is an efficient and affordable tracer, this method relies upon the assumption of a “normal” molecular-gas to dust mass ratio, δ GDR , typically of order 100. Recent null detections of quiescent galaxies in deep dust continuum observations support a picture where the cold gas and dust have been rapidly depleted or expelled. In this work, we present another viable explanation: a significant fraction of galaxies with low star formation per unit stellar mass are predicted to have extreme δ GDR ratios. We show that simulated massive quiescent galaxies at 0 < z < 3 in the simba cosmological simulations have δ GDR values that extend >4 orders of magnitude. The dust in most simulated quiescent galaxies is destroyed significantly more rapidly than the molecular gas depletes, and cannot be replenished. The transition from star-forming to quiescent halts dust formation via star formation processes, with dust subsequently destroyed by supernova shocks and thermal sputtering of dust grains embedded in hot plasma. After this point, the dust growth rate in the models is not sufficient to overcome the loss of >3 orders of magnitude in dust mass to return to normal values of δ GDR despite having high metallicity. Our results indicate that it is not straight forward to use a single observational indicator to robustly preselect exotic versus normal ratios. These simulations make strong predictions that can be tested with millimeter facilities.more » « less
- 
            Abstract We present the Texas Euclid Survey for Lyα(TESLA), a spectroscopic survey in the 10 deg2of the Euclid North Ecliptic Pole (NEP) field. Using TESLA, we study how the physical properties of Lyαemitters (LAEs) correlate with Lyαemission to understand the escape of Lyαemission from galaxies at redshifts of 2–3.5. We present an analysis of 43 LAEs performed in the NEP field using early data from the TESLA survey. We use Subaru Hyper Suprime-Cam imaging in thegrizybands, Spitzer/IRAC channels 1 and 2 from the Hawaii 20 deg2(H20) survey, and spectra acquired by the Visible Integral-Field Replicable Unit Spectrograph (VIRUS) on the Hobby–Eberly Telescope. We perform spectral energy distribution (SED) fitting to compute the galaxy properties of 43 LAEs, and study correlations between stellar mass, star formation rate (SFR), and dust to the Lyαrest-frame equivalent width (WLyα). We uncover marginal (1σsignificance) correlations between stellar mass andWLyα, and SFR andWLyα, with a Spearman correlation coefficient of −0. and −0. , respectively. We show that theWLyαdistribution of the 43 LAEs is consistent with being drawn from an exponential distribution with an e-folding scale ofW0= 150 Å. Once complete the TESLA survey will enable the study of ≳50,000 LAEs to explore more correlations between galaxy properties andWLyα. The large sample size will allow the construction of a predictive model forWLyαas a function of SED-derived galaxy properties, which could be used to improve Lyα-based constraints on reionization.more » « less
- 
            Abstract The gravitationally lensed star WHL 0137–LS, nicknamed Earendel, was identified with a photometric redshift z phot = 6.2 ± 0.1 based on images taken with the Hubble Space Telescope. Here we present James Webb Space Telescope (JWST) Near Infrared Camera images of Earendel in eight filters spanning 0.8–5.0 μ m. In these higher-resolution images, Earendel remains a single unresolved point source on the lensing critical curve, increasing the lower limit on the lensing magnification to μ > 4000 and restricting the source plane radius further to r < 0.02 pc, or ∼4000 au. These new observations strengthen the conclusion that Earendel is best explained by an individual star or multiple star system and support the previous photometric redshift estimate. Fitting grids of stellar spectra to our photometry yields a stellar temperature of T eff ≃ 13,000–16,000 K, assuming the light is dominated by a single star. The delensed bolometric luminosity in this case ranges from log ( L ) = 5.8 to 6.6 L ⊙ , which is in the range where one expects luminous blue variable stars. Follow-up observations, including JWST NIRSpec scheduled for late 2022, are needed to further unravel the nature of this object, which presents a unique opportunity to study massive stars in the first billion years of the universe.more » « less
- 
            Abstract We present the characteristics of 2 mm selected sources from the largest Atacama Large Millimeter/submillimeter Array (ALMA) blank-field contiguous survey conducted to date, the Mapping Obscuration to Reionization with ALMA (MORA) survey covering 184 arcmin2at 2 mm. Twelve of 13 detections above 5σare attributed to emission from galaxies, 11 of which are dominated by cold dust emission. These sources have a median redshift of primarily based on optical/near-infrared photometric redshifts with some spectroscopic redshifts, with 77% ± 11% of sources atz> 3 and 38% ± 12% of sources atz> 4. This implies that 2 mm selection is an efficient method for identifying the highest-redshift dusty star-forming galaxies (DSFGs). Lower-redshift DSFGs (z< 3) are far more numerous than those atz> 3 yet are likely to drop out at 2 mm. MORA shows that DSFGs with star formation rates in excess of 300M⊙yr−1and a relative rarity of ∼10−5Mpc−3contribute ∼30% to the integrated star formation rate density at 3 <z< 6. The volume density of 2 mm selected DSFGs is consistent with predictions from some cosmological simulations and is similar to the volume density of their hypothesized descendants: massive, quiescent galaxies atz> 2. Analysis of MORA sources’ spectral energy distributions hint at steeper empirically measured dust emissivity indices than reported in typical literature studies, with . The MORA survey represents an important step in taking census of obscured star formation in the universe’s first few billion years, but larger area 2 mm surveys are needed to more fully characterize this rare population and push to the detection of the universe’s first dusty galaxies.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
